Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Electron scattering by methanol and ethanol: A joint theoretical-experimental investigation
Author: Lee, MT
de Souza, GLC
Machado, LE
Brescansin, LM
dos Santos, AS
Lucchese, RR
Sugohara, RT
Homem, MGP
Sanches, IP
Iga, I
Abstract: We present a joint theoretical-experimental study on electron scattering by methanol (CH3OH) and ethanol (C2H5OH) in a wide energy range. Experimental differential, integral and momentum-transfer cross sections for elastic electron scattering by ethanol are reported in the 100-1000 eV energy range. The experimental angular distributions of the energy-selected electrons are measured and converted to absolute cross sections using the relative flow technique. Moreover, elastic, total, and total absorption cross sections for both alcohols are calculated in the 1-500 eV energy range. A complex optical potential is used to represent the dynamics of the electron-alcohol interaction, whereas the scattering equations are solved iteratively using the Pade's approximant technique. Our calculated data agree well with those obtained using the Schwinger multichannel method at energies up to 20 eV. Discrepancies at high energies indicate the importance of absorption effects, included in our calculations. In general, the comparison between our theoretical and experimental results, as well as with other experimental data available in the literature, also show good agreement. Nevertheless, the discrepancy between the theoretical and experimental total cross sections at low incident energies suggests that the experimental cross sections measured using the transmission technique for polar targets should be reviewed. (C) 2012 American Institute of Physics. []
Country: EUA
Editor: Amer Inst Physics
Citation: Journal Of Chemical Physics. Amer Inst Physics, v. 136, n. 11, 2012.
Rights: aberto
Identifier DOI: 10.1063/1.3695211
Date Issue: 2012
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000302214200030.pdf683.95 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.