Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/62863
Type: Artigo de periódico
Title: Characterization of nanosized TiO2 synthesized inside a porous glass-ceramic monolith by metallo-organic decomposition process
Author: Mazali, IO
Alves, OL
Abstract: This work reports the preparation of TiO2 by decomposition of a metallo-organic precursor (MOD process) in the pores of an alpha-NbPO5 glass-ceramic monolith (PGC-NbP) and the study of the TiO2 anatase-rutile transition phase. The impregnation of titanium di-(propoxy)-di-(2-ethylhexanoate) in the PGC-NbP was confirmed by diffuse reflectance infrared spectroscopy. In the restrictive porous environment the decomposition of the metallo-organic compound exhibits a lower initial decomposition temperature but a higher final decomposition temperature, in comparison to the free precursor. The pure TiO2 rutile phase is formed only above 700 degreesC when the titanium precursor is decomposed outside the pores. The TiO2 anatase obtained inside the PGC-NbP was stabilized up to 750 degreesC and exhibits a smaller average crystallite size in comparison with the MOD process performed without PGC-NbP. Furthermore, the temperature of the TiO2 anatase-rutile transformation depends on crystallite size, which was provided by XRD and Raman spectroscopy. The precursor impregnation-decomposition cycle revealed a linear mass increment inside PGC-NbP. Micro-Raman spectroscopy shows the presence of a gradient concentration of the TiO2 inside the PGC-NbP. The use of the MOD process in the PGC-NbP pores has several advantages: control of the amount and the nature of the phase formed and preservation of the pore structure of PGC-NbP for subsequent treatments and reactions. (C) 2004 Elsevier Ltd. All rights reserved.
Subject: ceramics
chemical synthesis
Raman spectroscopy
phase transitions
Country: Inglaterra
Editor: Pergamon-elsevier Science Ltd
Rights: fechado
Identifier DOI: 10.1016/j.jpcs.2004.08.029
Date Issue: 2005
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000226342900007.pdf430.01 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.