Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/62786
Type: Artigo de periódico
Title: Characterization and modeling of antireflective coatings of SiO2, Si3N4, and SiOxNy deposited by electron cyclotron resonance enhanced plasma chemical vapor deposition
Author: Mestanza, SNM
Obrador, MP
Rodriguez, E
Biasotto, C
Doi, I
Diniz, JA
Swart, JW
Abstract: In this work the optical transmission spectra of silicon oxide (SiO2), silicon nitrides (Si3N4), silicon-rich oxynitrides (SiOxNy), and antireflective coatings (ARCs), deposited by the electron cyclotron resonance enhanced plasma chemical vapor deposition onto a silicon substrate at room temperature, are studied. Simulations carried out with the MATHEMATICA program, from 0 to 1000 nm thick coatings, showed maximum transmittance in the three basic colors at 620, 480, and 560 nm for the SiO2, Si3N4, and SiOxNy ARCs, respectively. However, a highly significant transmittance over a broad spectral range from visible (VIS) to near the infrared region, with optical gain in the three basic colors above 20%, is observed only at thicknesses of 80, 70, and 60 nm, respectively, for SiO2, Si3N4, and SiOxNy ARCs. Among the three evaluated films, the highest transmittance in the broad spectral band in the VIS range was observed for 60 nm thick Si3N4 films. The Fourier transform infrared spectroscopy of these films reveal high structural quality and the presence of Si-O, Si-H, N-H, and Si-N bonds, independent of thickness and deposition parameters. (c) 2006 American Vacuum Society.
Country: EUA
Editor: A V S Amer Inst Physics
Rights: aberto
Identifier DOI: 10.1116/1.2181577
Date Issue: 2006
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000237172000057.pdf363.94 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.