Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/62456
Type: Artigo de periódico
Title: Dopant Segregation Analysis on Sb:SnO2 Nanocrystals
Author: Stroppa, DG
Montoro, LA
Beltran, A
Conti, TG
da Silva, RO
Andres, J
Leite, ER
Ramirez, AJ
Abstract: The development of reliable nanostructured devices is intrinsically dependent on the description and manipulation of materials' properties at the atomic scale. Consequently, several technological advances are dependent on improvements in the characterization techniques and in the models used to describe the properties of nanosized materials as a function of the synthesis parameters. The evaluation of doping element distributions in nanocrystals is directly linked to fundamental aspects that define the properties of the material, such as surface-energy distribution, nanoparticle shape, and crystal growth mechanism. However, this is still one of the most challenging tasks in the characterization of materials because of the required spatial resolution and other various restrictions from quantitative characterization techniques, such as sample degradation and signal-to-noise ratio. This paper addresses the dopant segregation characterization for two antimony-doped tin oxide (Sb:SnO2) systems, with different Sb doping levels, by the combined use of experimental and simulated high-resolution transmission electron microscopy (HRTEM) images and surface-energy ab initio calculations. The applied methodology provided three-dimensional models with geometrical and compositional information that were demonstrated to be self-consistent and correspond to the systems' mean properties. The results evidence that the dopant distribution configuration is dependent on the system composition and that dopant atom redistribution may be an active mechanism for the overall surface-energy minimization.
Subject: antimony
doping
molecular modeling
nanostructures
surface chemistry
tin
Country: EUA
Editor: Wiley-blackwell
Rights: fechado
Identifier DOI: 10.1002/chem.201100972
Date Issue: 2011
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000297014400019.pdf1.24 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.