Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Newton-type interior-point methods for solving generalized complementarity problems in polyhedral cones
Author: Andreani, R
Santos, SA
Shirabayashi, WVI
Abstract: In this work the solution of the generalized nonlinear complementarity problem (GNCP) in polyhedral cones is addressed by two interior-point strategies: a perturbed Newton method and a predictor-corrector method. The latter may be considered as a member of the so-called Chebyshev-Halley family of methods for nonlinear systems, adapted to conform with the interior-point approach. Applied to a linear complementarity problem, the proposed method becomes the well-known Mehrotra's predictor-corrector method. Quadratic local convergence results are proved under the assumptions usually made for the GNCP. Numerical experiments validate the usage of both ideas for solving the GNCP in polyhedral cones. The proposed predictor-corrector method is implementable and competitive with Newton's method for some problems.
Subject: generalized nonlinear complementarity problem
interior-point methods
Newton's method
predictor-corrector methods
tensorial methods
Country: Inglaterra
Editor: Taylor & Francis Ltd
Rights: fechado
Identifier DOI: 10.1080/02331934.2010.524216
Date Issue: 2011
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.