Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Iron Oxide Nanosized Clusters Embedded in Porous Nanorods: A New Colloidal Design to Enhance Capabilities of MRI Contrast Agents
Author: Rebolledo, AF
Laurent, S
Calero, M
Villanueva, A
Knobel, M
Marco, JF
Tartaj, P
Abstract: Development of nanosized materials to enhance the image contrast between the normal and diseased tissue and/or to indicate the status of organ functions or blood flow is essential in nuclear magnetic resonance imaging (MRI). Here we describe a contrast agent based on a new ben oxide design (superparamagnetic iron oxide clusters embedded in antiferromagnetic iron oxide porous nanorods). We show as a proof-of-concept that aqueous colloidal suspensions containing these particles show enhanced-proton relaxivities (i.e., enhanced MRI contrast capabilities). A remarkable feature of this new design is that large scale production is possible since aqueous-based routes are used, and porosity and iron oxide superparamagnetic clusters are directly developed from a single phase. We have also proved with the help of a simple model that the physical basis behind the increase in relaxivities lies on both the increase of dipolar field (interactions within iron oxide clusters) and the decrease of proton-cluster distance (porosity favors the close contact between protons and clusters). Finally, a list of possible steps to follow to enhance capabilities of this contrast agent is also included (partial coating with noble metals to add extra sensing capacity and chemical functionality, to increase the amount of doping while simultaneously carrying out cytotoxicity studies, or to find conditions to further decrease the size of the nanorods and to enhance their stability).
Subject: nanorods
iron oxide
superparamagnetic MRI
Country: EUA
Editor: Amer Chemical Soc
Rights: fechado
Identifier DOI: 10.1021/nn9013388
Date Issue: 2010
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000276956800042.pdf3.13 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.