Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces
Author: Ambrosio, LA
Hernandez-Figueroa, HE
Abstract: Ordinary Bessel beams are described in terms of the generalized Lorenz-Mie theory (GLMT) by adopting, for what is to our knowledge the first time in the literature, the integral localized approximation for computing their beam shape coefficients (BSCs) in the expansion of the electromagnetic fields. Numerical results reveal that the beam shape coefficients calculated in this way can adequately describe a zero-order Bessel beam with insignificant difference when compared to other relative time-consuming methods involving numerical integration over the spherical coordinates of the GLMT coordinate system, or quadratures. We show that this fast and efficient new numerical description of zero-order Bessel beams can be used with advantage, for example, in the analysis of optical forces in optical trapping systems for arbitrary optical regimes. (C) 2011 Optical Society of America
Country: EUA
Editor: Optical Soc Amer
Rights: aberto
Date Issue: 2011
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000299879500011.pdf1.48 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.