Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Inference of network anomaly propagation using spatio-temporal correlation
Author: Amaral, AA
Zarpelao, BB
Mendes, LD
Rodrigues, JJPC
Proenca, ML
Abstract: Many solutions have been proposed for network alarm correlation. However, they mainly have focused on alarm reduction and on root cause analysis. This paper presents an automated alarm correlation system composed of three layers, which obtains raw alarms and presents to network administrator a wide view of the scenario affected by the volume anomaly. In the preprocessing layer, it is performed the alarm compression using their spatial and temporal attributes, which are reduced into a unique alarm named Device Level Alarm (DLA). The correlation layer aims to infer the anomaly propagation path and its origin and destination using DLAs and network topology information. The presentation layer provides the visualization of the path and network elements affected by the anomaly propagation. Moreover, it is presented the Anomaly Propagation View (APV), a graphic tool developed to provide a wide visualization of the network status. In order to evaluate the effectiveness of the proposed solution, it was used real traffic data from State University of Londrina. (c) 2012 Elsevier Ltd. All rights reserved.
Subject: Alarms
Anomaly propagation
Noisy alarm
Country: Inglaterra
Editor: Academic Press Ltd- Elsevier Science Ltd
Rights: fechado
Identifier DOI: 10.1016/j.jnca.2012.07.003
Date Issue: 2012
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000310670100011.pdf1.86 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.