Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Inexact restoration method for minimization problems arising in electronic structure calculations
Author: Francisco, JB
Martinez, JM
Martinez, L
Pisnitchenko, F
Abstract: An inexact restoration (IR) approach is presented to solve a matricial optimization problem arising in electronic structure calculations. The solution of the problem is the closed-shell density matrix and the constraints are represented by a Grassmann manifold. One of the mathematical and computational challenges in this area is to develop methods for solving the problem not using eigenvalue calculations and having the possibility of preserving sparsity of iterates and gradients. The inexact restoration approach enjoys local quadratic convergence and global convergence to stationary points and does not use spectral matrix decompositions, so that, in principle, large-scale implementations may preserve sparsity. Numerical experiments show that IR algorithms are competitive with current algorithms for solving closed-shell Hartree-Fock equations and similar mathematical problems, thus being a promising alternative for problems where eigenvalue calculations are a limiting factor.
Subject: Constrained optimization
Inexact restoration
Self-consistent field
Quadratic convergence
Numerical experiments
Country: EUA
Editor: Springer
Rights: fechado
Identifier DOI: 10.1007/s10589-010-9318-6
Date Issue: 2011
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000297364200006.pdf1.25 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.