Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Piecewise linear differential systems with two real saddles
Author: Artes, JC
Llibre, J
Medrado, JC
Teixeira, MA
Abstract: In this paper we study piecewise linear differential systems formed by two regions separated by a straight line so that each system has a real saddle point in its region of definition. If both saddles are conveniently situated, they produce a transition flow from a segment of the splitting line to another segment of the same line, and this produces a generalized singular point on the line. This point is a focus or a center and there can be found limit cycles around it. We are going to show that the maximum number of limit cycles that can bifurcate from this focus is two. One of them appears through a Hopf bifurcation and the second when the focus becomes a node by means of the sliding. (C) 2013 IMACS. Published by Elsevier B.V. All rights reserved.
Subject: Non-smooth differential system
Limit cycle
Piecewise linear differential system
Hopf bifurcation
Sliding limit cycle
Country: Holanda
Editor: Elsevier Science Bv
Rights: fechado
Identifier DOI: 10.1016/j.matcom.2013.02.007
Date Issue: 2014
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.