Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Quasi-normable preduals of spaces of holomorphic functions
Author: Garcia, D
Mujica, J
Abstract: Let H(U) denote the space of all holomorphic functions on an open subset U of a separable Frechet space E. Let tau(omega) denote the compact-ported topology on H(U) introduced by Nachbin. Let G(U) denote the predual of H(U) constructed by Mazet. In our main result we show that E is quasi-normable if and only if G(U) is quasi-normable if and only if (H(U), tau(omega)) satisfies the strict Mackey convergence condition. (C) 1997 Academic Press.
Editor: Academic Press Inc Jnl-comp Subscriptions
Citation: Journal Of Mathematical Analysis And Applications. Academic Press Inc Jnl-comp Subscriptions, v. 208, n. 1, n. 171, n. 180, 1997.
Rights: fechado
Identifier DOI: 10.1006/jmaa.1997.5311
Date Issue: 1997
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOSA1997WT77200011.pdf173.48 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.