Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/58723
Type: Artigo de periódico
Title: QUASI-CONSERVATIVE MAPS AND NORMAL FORMS FOR UNSTABLE FIXED-POINTS
Author: DEMATOS, MB
DEALMEIDA, AMO
Abstract: The real eigenvalues lambda(1) and lambda(2) of an unstable fixed point of a plane diffeomorphism are resonant when lambda(j) = lambda(1)(n) lambda(2)(m). To avoid the presence of dense resonances in a one-parameter family of maps we propose a generalisation of the Birkhoff normal form for quasi-conservative maps. This generalisation does not converge on the resonances but even there it can be taken as an excellent approximation. We use it to calculate homoclinic points with great precision.
Country: Holanda
Editor: Elsevier Science Bv
Rights: fechado
Identifier DOI: 10.1016/0375-9601(94)90984-9
Date Issue: 1994
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOSA1994MW17800008.pdf355.96 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.