Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/57144
Type: Artigo de periódico
Title: Convergence of the vanishing viscosity approximation for superpositions of confined eddies
Author: Lopes, MC
Lopes, HJN
Zheng, YX
Abstract: A confined eddy is a circularly symmetric flow with vorticity of compact support and zero net circulation. Confined eddies with disjoint supports can be super-imposed to generate stationary weak solutions of the two-dimensional incompressible inviscid Euler equations. In this work, we consider the unique weak solution of the two-dimensional incompressible Navier-Stokes equations having a disjoint superposition of very singular confined eddies as the initial datum. We prove the convergence of these weak solutions back to the initial configuration, as the Reynolds number goes to infinity. This implies that the stationary superposition of confined eddies with disjoint supports is the unique physically correct weak solution of the two-dimensional incompressible Euler equations.
Country: EUA
Editor: Springer Verlag
Rights: fechado
Identifier DOI: 10.1007/s002200050556
Date Issue: 1999
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000079415700002.pdf119.58 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.