Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Complex Hyperbolic Structures on Disc Bundles over Surfaces
Author: Anan'in, S
Grossi, CH
Gusevskii, N
Abstract: We study complex hyperbolic disc bundles over closed orientable surfaces that arise from discrete and faithful representations H(n) -> PU(2, 1), where H(n) is the fundamental group of the orbifold S(2)(2, ... ,2) and thus contains a surface group as a subgroup of index 2 or 4. The results obtained provide the first complex hyperbolic disc bundles M -> Sigma that admit both real and complex hyperbolic structures, satisfy the equality 2(chi + e) = 3 tau, satisfy the inequality 1/2 chi < e, and induce discrete and faithful representations pi(1)Sigma -> PU( 2, 1) with fractional Toledo invariant, where chi is the Euler characteristic of Sigma, e denotes the Euler number of M, and tau stands for the Toledo invariant of M. To obtain a satisfactory explanation of the equality 2(chi + e) = 3 tau, we conjecture that there exists a holomorphic section in all our examples. In order to reduce the amount of calculations, we systematically explore coordinate-free methods.
Country: Inglaterra
Editor: Oxford Univ Press
Rights: fechado
Identifier DOI: 10.1093/imrn/rnq161
Date Issue: 2011
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000295681600001.pdf995.93 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.