Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/56342
Type: Artigo de periódico
Title: COMPLETE SPACES OF VECTOR-VALUED HOLOMORPHIC GERMS
Author: BONET, J
DOMANSKI, P
MUJICA, J
Abstract: Let K be a non-empty compact subset of a Frechet space E and let X be a Banach space. By means of a given representation of the LB-space H(K, X) of germs of holomorphic functions with values in X as a space of linear operators, it is proved that the space H(K, X) is complete if E is quasinormable or if X is complemented in its bidual. If E is a Frechet-Montel space, X is an L infinity-space in the sense of Lindenstrauss and Pelczyhski and H(K,X) is complete, then E'(b) ($) over cap circle times(epsilon)X must be an LB-space. It is an open problem whether c(0)(E'(b)) similar or equal to E'(b) ($) over cap circle times(epsilon)c(0) is an LB-space for every Frechet-Montel space E.
Country: Dinamarca
Editor: Matematisk Institut
Rights: fechado
Date Issue: 1994
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOSA1994QQ58600011.pdf998.53 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.