Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/56340
Type: Artigo de periódico
Title: Complete quenching for singular parabolic problems
Author: Montenegro, M
Abstract: We prove finite time extinction of the solution of the equation u(t) - Delta u + chi((u>0))(u(-beta) - lambda f (u)) = 0 in Omega x (0, infinity) with boundary data u(x, t) = 0 on partial derivative Omega x (0, infinity) and initial condition u(x, 0) = u(0)(x) in Omega, where Omega subset of R(N) is a bounded smooth domain, 0 < beta < 1 and lambda > 0 is a parameter. For every small enough lambda > 0 there exists a time t(0) > 0 such that the solution is identically equal to zero. (C) 2011 Elsevier Inc. All rights reserved.
Subject: Parabolic equation
Quenching
Free boundary
Country: EUA
Editor: Academic Press Inc Elsevier Science
Rights: fechado
Identifier DOI: 10.1016/j.jmaa.2011.06.011
Date Issue: 2011
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000294097000039.pdf142.3 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.