Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Clustering ensembles and space discretization - A new regard toward diversity and consensus
Author: Montalvao, J
Canuto, J
Abstract: In recent years, the cluster ensembles have been successfully used to tackle well known drawbacks of individual clustering algorithms. Beyond the expected improvement provided by the averaging effect of many clustering algorithms (clustering committee) aiming at the same goal, some interesting experimental results also show that even committees of completely random partitions may lead to a useful consensus. Another powerful finding in cluster ensemble research is that the blind criterion Averaged Normalized Mutual Information seems to replace actual misclassification ratio, whenever labels are given to actual clusters. In this work, we study what is behind these interesting results and the blind criterion, and we use what we learn from this study to propose a new point of view for analysis and design of clustering committees. The usefulness of this new perspective is illustrated through experimental results. (C) 2010 Elsevier B.V. All rights reserved.
Subject: Clustering ensembles
Weak partitions
ANMI criterion
Binary morphology
Country: Holanda
Editor: Elsevier Science Bv
Rights: fechado
Identifier DOI: 10.1016/j.patrec.2010.07.018
Date Issue: 2010
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000282541700009.pdf1.03 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.