Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Asymptotic behaviour of randomly reflecting billiards in unbounded tubular domains
Author: Menshikov, MV
Vachkovskaia, M
Wade, AR
Abstract: We study stochastic billiards in infinite planar domains with curvilinear boundaries: that is, piecewise deterministic motion with randomness introduced via random reflections at the domain boundary. Physical motivation for the process originates with ideal gas models in the Knudsen regime, with particles reflecting off microscopically rough surfaces. We classify the process into recurrent and transient cases. We also give almost-sure results on the long-term behaviour of the location of the particle, including a super-diffusive rate of escape in the transient case. A key step in obtaining our results is to relate our process to an instance of a one-dimensional stochastic process with asymptotically zero drift, for which we prove some new almost-sure bounds of independent interest. We obtain some of these bounds via an application of general semimartingale criteria, also of some independent interest.
Subject: stochastic billiards
rarefied gas dynamics
Knudsen random walk
random reflections
Lamperti problem
almost-sure bounds
birth-and-death chain
Country: EUA
Editor: Springer
Citation: Journal Of Statistical Physics. Springer, v. 132, n. 6, n. 1097, n. 1133, 2008.
Rights: fechado
Identifier DOI: 10.1007/s10955-008-9578-z
Date Issue: 2008
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000258675200006.pdf754.17 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.