Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Asymptotic angular stability in non-linear systems: rotation numbers and winding numbers
Author: McSharry, PE
Ruffino, PRC
Abstract: The asymptotic angular stability of a dynamical system may be quantified by its rotation number or its winding number. These two quantities are shown to result from different assumptions, made about the flow generating the Poincare map which results from the sequence of homeomorphisms in S-1. An ergodic theorem of existence a.s. of the rotation number for non-linear systems is given. The advantages and disadvantages of both the rotation and winding numbers are discussed. Numerical calculations of the distribution of rotation number and winding number arising from different initial conditions are presented for three different chaotic maps.
Country: Inglaterra
Editor: Taylor & Francis Ltd
Rights: fechado
Identifier DOI: 10.1080/1468936031000155927
Date Issue: 2003
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000186605100001.pdf334.49 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.