Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Assessing Asymptotic Stability of Linear Continuous Time-Varying Systems by Computing the Envelope of all Trajectories
Author: Garcia, G
Peres, PLD
Tarbouriech, S
Abstract: In this note, necessary and sufficient numerical conditions for asymptotic stability and for uniform asymptotic stability of linear continuous time-varying systems are derived. For a given set of initial conditions, a tube containing all the trajectories of the system is constructed in the state space. At each instant of time, there exists an initial condition inside the set such that the resulting trajectory attains the border of the tube. Based on the above formulation, necessary and sufficient conditions for asymptotic stability and for uniform asymptotic stability are expressed through the solution of a linear differential Lyapunov equation. The conditions can deal with the stability of periodic systems as well. One of the main characteristics of the proposed necessary and sufficient conditions is that the only assumption on the dynamical matrix of the time-varying system is continuity. Examples from the literature illustrate the superiority of the proposed conditions when compared to other methods.
Subject: Continuous-time systems
stability of linear systems
time-varying systems
Country: EUA
Editor: Ieee-inst Electrical Electronics Engineers Inc
Rights: fechado
Identifier DOI: 10.1109/TAC.2010.2041679
Date Issue: 2010
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000276251300021.pdf763.15 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.