Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Analysis of torsional vibration in internal combustion engines: modelling and experimental validation
Author: Mendes, AS
Meirelles, PS
Zampieri, DE
Abstract: This paper reports on a study of the crankshaft torsional vibration phenomenon in internal combustion engines. The steady state of the state equation is solved by the transition state matrix and the convolution integral. This formulation is applied to the model of a six-cylinder diesel engine manufactured by MWM International Motores(R). The analyses consider a rubber and viscous damper assembled to the crankshaft front-end. An analysis of the torsional vibrations indicates the dynamic loading on each crankshaft section, and these loads can be applied as boundary conditions in a finite element model to predict the safety factor of the component and to compare the system's behaviour with rubber and viscous damper options. This study highlights the importance of torsional vibration analyses in the structural dimensioning of crankshafts. The results of the torsional vibration amplitude are compared with measured values to experimentally validate the proposed mathematical model.
Subject: torsional vibrations
internal combustion engines
viscous dampers
rubber dampers
Country: Inglaterra
Editor: Professional Engineering Publishing Ltd
Rights: fechado
Identifier DOI: 10.1243/14644193JMBD126
Date Issue: 2008
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000257858800005.pdf7.45 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.