Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/54297
Type: Artigo de periódico
Title: AN AMBROSETTI-PRODI-TYPE RESULT FOR A QUASILINEAR NEUMANN PROBLEM
Author: de Paiva, FO
Montenegro, M
Abstract: We study the problem -Delta(p)u - f(x, u) + t in Omega with Neumann boundary condition vertical bar del u|(p-2)(partial derivative u/partial derivative nu) = 0 on partial derivative Omega. There exists a t(0) is an element of R such that for t > t(0) there is no solution. If t <= t(0), there is at least a minimal solution, and for t < t(0) there are at least two distinct solutions. We use the sub-supersolution method, a priori estimates and degree theory.
Subject: a priori estimates
degree theory
sub-supersolutions
Country: EUA
Editor: Cambridge Univ Press
Rights: embargo
Identifier DOI: 10.1017/S0013091512000041
Date Issue: 2012
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000308715700012.pdf166.65 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.