Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/53964
Type: Artigo de periódico
Title: A weaker version of Lovasz' path removal conjecture
Author: Kawarabayashi, KI
Lee, O
Reed, B
Wollan, P
Abstract: We prove there exists a function f (k) such that for every f (k)-connected graph G and for every edge e epsilon E(G), there exists an induced cycle C containing e such that G - E(C) is k-connected. This proves a weakening of a conjecture of Lovasz due to Kriesell. (C) 2008 Elsevier Inc. All rights reserved.
Subject: graph connectivity
removable paths
non-separating cycles
Country: EUA
Editor: Academic Press Inc Elsevier Science
Rights: fechado
Identifier DOI: 10.1016/j.jctb.2007.11.003
Date Issue: 2008
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000259099200003.pdf180.43 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.