Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: A regular semiclassical approximation for the propagation of wave packets with complex trajectories
Author: Parisio, F
de Aguiar, MAM
Abstract: The semiclassical propagation of Gaussian wave packets by complex classical trajectories involves multiple contributing and noncontributing solutions interspersed by phase space caustics. Although the phase space caustics do not generally lie exactly on the relevant trajectories, they might strongly affect the semiclassical evolution depending on their proximity to them. In this paper, we derive a third-order regular semiclassical approximation which correctly accounts for the caustics and which is finite everywhere. We test the regular formula for the potential V (x) = 1/x(2), where the complex classical trajectories and phase space caustics can be computed analytically. We make a detailed analysis of the structure of the complex functions involved in the saddle point approximations and show how the changes in the steepest descent integration contour control both the contributing and noncontributing trajectories and the type of Airy function that appears in the regular approximation.
Country: Inglaterra
Editor: Iop Publishing Ltd
Rights: fechado
Identifier DOI: 10.1088/0305-4470/38/42/011
Date Issue: 2005
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000233317700016.pdf1.15 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.