Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/53686
Type: Artigo de periódico
Title: A refined estimate of the size of concentration sets for 2D incompressible inviscid flow
Author: Lopes, HJN
Abstract: In this paper we consider approximate solution sequences of the incompressible 2D Euler equations with vortex sheet initial data, that is, initial Rows with locally bounded kinetic energy such that the initial vorticity has bounded total mass. We show that, for every gamma > 0, there exists a concentration set (in the sense of DiPerna and Majda) for these approximate solution sequences with Hausdorff dimension at most 2+gamma, in the following fluid dynamics situations: Row in a bounded domain, periodic flow, and flow in the full plane but with non-negative vorticity.
Editor: Indiana Univ Math Journal
Rights: aberto
Date Issue: 1997
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.