Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: A conjugate for the Bargmann representation
Author: Ribeiro, AD
Parisio, F
de Aguiar, MAM
Abstract: In the Bargmann representation of quantum mechanics, physical states are mapped into entire functions of a complex variable z*, whereas the creation and annihilation operators (a) over cap (dagger) and (a) over cap a play the role of multiplication and differentiation with respect to z*, respectively. In this paper we propose an alternative representation of quantum states, conjugate to the Bargmann representation, where the roles of (a) over cap (dagger) and (a) over cap a are reversed, much like the roles of the position and momentum operators in their respective representations. We derive expressions for the inner product that maintain the usual notion of distance between states in the Hilbert space. Applications to simple systems and to the calculation of semiclassical propagators are presented.
Country: Inglaterra
Editor: Iop Publishing Ltd
Rights: fechado
Identifier DOI: 10.1088/1751-8113/42/10/105301
Date Issue: 2009
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000263494400013.pdf194.28 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.