Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/52878
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUniversidade Estadual de Campinaspt_BR
dc.typeArtigo de periódicopt_BR
dc.titleA class of asymptotically normal degenerate quasi U-statisticspt_BR
dc.contributor.authorPinheiro, Apt_BR
dc.contributor.authorSen, PKpt_BR
dc.contributor.authorPinheiro, HPpt_BR
unicamp.author.emailpinheiro@ime.unicamp.brpt_BR
unicamp.author.emailpksen@bios.unc.edupt_BR
unicamp.author.emailhildete@ime.unicamp.brpt_BR
unicamp.authorPinheiro, Aluisio Pinheiro, Hildete P. Univ Estadual Campinas, Dept Estat, BR-13083970 Campinas, SP, Brazilpt_BR
unicamp.authorSen, Pranab Kumar Univ N Carolina, Sch Publ Hlth, Dept Biostat & Stat & Operat Res, Chapel Hill, NC 27599 USApt_BR
dc.subjectGenomicspt_BR
dc.subjectHamming distancept_BR
dc.subjectMartingalept_BR
dc.subjectOrthogonal systempt_BR
dc.subjectPermutation measurept_BR
dc.subjectSecond-order asymptoticspt_BR
dc.subjectHigher order decomposabilitypt_BR
dc.subject.wosCentral Limit-theoremspt_BR
dc.subject.wosSymmetric Statisticspt_BR
dc.subject.wosGenomic Sequencespt_BR
dc.subject.wosDistributionspt_BR
dc.subject.wosMartingalespt_BR
dc.description.abstractSome quasi U-statistics, unlike other variants of U-statistics, arising in distance based tests for homogeneity of groups, have first-order stationary kernels of degree 2, and yet they enjoy asymptotic normality under suitable hypotheses of invariance. Central limit theorems for a more general class of quasi U-statistics with possibly higher order stationarity (and degree) are formulated with the aid of appropriate martingale (array) characterizations as well as permutational invariance structures.pt
dc.relation.ispartofAnnals Of The Institute Of Statistical Mathematicspt_BR
dc.relation.ispartofabbreviationAnn. Inst. Stat. Math.pt_BR
dc.publisher.cityHeidelbergpt_BR
dc.publisher.countryAlemanhapt_BR
dc.publisherSpringer Heidelbergpt_BR
dc.date.issued2011pt_BR
dc.date.monthofcirculationDECpt_BR
dc.identifier.citationAnnals Of The Institute Of Statistical Mathematics. Springer Heidelberg, v. 63, n. 6, n. 1165, n. 1182, 2011.pt_BR
dc.language.isoenpt_BR
dc.description.volume63pt_BR
dc.description.issuenumber6pt_BR
dc.description.firstpage1165pt_BR
dc.description.lastpage1182pt_BR
dc.rightsfechadopt_BR
dc.rights.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0pt_BR
dc.sourceWeb of Sciencept_BR
dc.identifier.issn0020-3157pt_BR
dc.identifier.wosidWOS:000294344800005pt_BR
dc.identifier.doi10.1007/s10463-010-0271-zpt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.description.sponsorship1Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt_BR
dc.description.sponsorship1Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.description.sponsordocumentnumberFAPESP [08/51097-6, 08/09286-6, 09/14176-8]pt
dc.description.sponsordocumentnumberCNPq [306993/2008-2, 480919/2009-7, 306240/2009-2]pt
dc.date.available2014-07-30T13:39:15Z
dc.date.available2015-11-26T16:32:38Z-
dc.date.accessioned2014-07-30T13:39:15Z
dc.date.accessioned2015-11-26T16:32:38Z-
dc.description.provenanceMade available in DSpace on 2014-07-30T13:39:15Z (GMT). No. of bitstreams: 0 Previous issue date: 2011en
dc.description.provenanceMade available in DSpace on 2015-11-26T16:32:38Z (GMT). No. of bitstreams: 2 WOS000294344800005.pdf: 256240 bytes, checksum: 8cc88c593ed771f005274ec200db6c41 (MD5) WOS000294344800005.pdf.txt: 36851 bytes, checksum: d86ceff1f869013ac2cc0b1625ac0e03 (MD5) Previous issue date: 2011en
dc.identifier.urihttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/52878
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/52878-
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000294344800005.pdf250.23 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.