Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Author: Goncalves, DS
Gomes-Ruggiero, MA
Lavor, C
Farias, OJ
Ribeiro, PHS
Abstract: Maximum likelihood estimation is one of the most used methods in quantum state tomography, where the aim is to reconstruct the density matrix of a physical system from measurement results. One strategy to deal with positivity and unit trace constraints is to parameterize the matrix to be reconstructed in order to ensure that it is physical. In this case, the negative log-likelihood function in terms of the parameters, may have several local minima. In various papers in the field, a source of errors in this process has been associated to the possibility that most of these local minima are not global, so that optimization methods could be trapped in the wrong minimum, leading to a wrong density matrix. Here we show that, for convex negative log-likelihood functions, all local minima of the unconstrained parameterized problem are global, thus any minimizer leads to the maximum likelihood estimation for the density matrix. We also discuss some practical sources of errors.
Subject: Quantum state tomography
maximum likelihood
local maxima
Country: EUA
Editor: Rinton Press, Inc
Rights: fechado
Date Issue: 2012
Appears in Collections:Artigos e Materiais de Revistas Científicas - Unicamp

Files in This Item:
File Description SizeFormat 
WOS000309484200004.pdf575.05 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.