Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/361551
Type: Artigo
Title: Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa
Author: Oliveira, Vinicius Henrique De
Ullah, Ihsan
Dunwell, Jim M.
Tibbett, Mark
Abstract: Cadmium (Cd) is an extremely toxic environmental pollutant with high mobility in soils, which can contaminate groundwater, increasing its risk of entering the food chain. Yeast biosorption can be a low-cost and effective method for removing Cd from contaminated aqueous solutions. We transformed wild-type Saccharomyces cerevisiae (WT) with two versions of a Populus trichocarpa gene (PtMT2b) coding for a metallothionein: one with the original sequence (PtMT2b ‘C’) and the other with a mutated sequence, with an amino acid substitution (C3Y, named here: PtMT2b ‘Y’). WT and both transformed yeasts were grown under Cd stress, in agar (0; 10; 20; 50 μM Cd) and liquid medium (0; 10; 20 μM Cd). Yeast growth was assessed visually and by spectrometry OD600. Cd removal from contaminated media and intracellular accumulation were also quantified. PtMT2b ‘Y’ was also inserted into mutant strains: fet3fet4, zrt1zrt2 and smf1, and grown under Fe-, Zn- and Mn-deficient media, respectively. Yeast strains had similar growth under 0 μM, but differed under 20 μM Cd, the order of tolerance was: WT < PtMT2b ‘C’ < PtMT2b ‘Y’, the latter presenting 37% higher growth than the strain with PtMT2b ‘C’. It also extracted ~80% of the Cd in solution, and had higher intracellular Cd than WT. Mutant yeasts carrying PtMT2b ‘Y’ had slightly higher growth in Mn- and Fe-deficient media than their non-transgenic counterparts, suggesting the transgenic protein may chelate these metals. S. cerevisiae carrying the altered poplar gene offers potential for bioremediation of Cd from wastewaters or other contaminated liquids.
Subject: Biotecnologia
Country: Estados Unidos
Editor: Elsevier
Rights: Fechado
Identifier DOI: 10.1016/j.ecoenv.2020.110917
Address: https://www.sciencedirect.com/science/article/pii/S0147651320307569
Date Issue: 2020
Appears in Collections:IB - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.