Please use this identifier to cite or link to this item:
Type: Artigo
Title: Bacterial nanocellulose biomembrane as a support for human insulin aiming at transdermal permeation
Author: Jorge, Ludmilla R.
Harada, Liliam K.
Silva, Erica C.
Campos, Welida F.
Oliveira Jr., José M.
Vila, Marta M. D. C.
Tubino, Matthieu
Balcão, Victor M.
Abstract: Production of bacterial nanocellulose was pursued as a matrix system for the stabilization of human insulin. The biomembranes produced by Gluconacetobacter hansenii were washed with 2% aqueous sodium dodecylsulfate solution, rinsed with ultrapure water and immersed in 1 mol L-1 NaOH aqueous solution at 60 °C for 90 min until neutralization. For the insulin adsorption assays, the biomembranes were soaked in a buffered solution of human insulin until no protein could be detected in the supernatant. The membranes with adsorbed insulin were characterized via mechanical resistance (resilience, relaxation, perforation), Differential Scanning Calorimetry (DSC), Thermal Gravimetrical Analysis (TGA), Fourier Transform Infrared Spectrophotometry (FTIR), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) analyses. The FESEM photomicrographs of the surface of the biomembranes showed a rugged surface without cracks. The biomembranes exhibited adequate mechanical characteristics. The infrared spectra indicated that the chemical aspect of the protein moiety was preserved during adsorption onto the BNC biomembranes. According to the XRD analyses, the biomembranes showed a generalized amorphous behavior. Thermal analyses indicated an adequate thermal stability for a pharmaceuticals product. Hence, an elastic and malleable biomembrane was produced, suitable for incorporation of human insulin, aiming at transdermal delivery
Subject: Biomembranas
Country: Brasil
Editor: Sociedade Brasileira de Química
Rights: Aberto
Identifier DOI: 10.21577/0100-4042.20170522
Date Issue: 2020
Appears in Collections:IQ - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.