Please use this identifier to cite or link to this item:
Type: Artigo
Title: Splitting up entropy into vibrational and configurational contributions in bulk metallic glasses: a thermodynamic approach
Author: Alvarez-Donado, R.
Antonelli, A.
Abstract: We apply an efficient methodology to separate vibrational and configurational entropies in bulk metallic glasses by means of molecular dynamics simulation based on a combination of nonequilibrium adiabatic switching and reversible scaling methods. This approach involves calculating the vibrational free energy using the Einstein crystal as a reference for the solid phase and the recently proposed Uhlenbeck-Ford model for the fluid phase. This methodology has the advantage that it does not require a crystalline solid phase for separating the entropies. Therefore, in principle, it is applicable to any material, regardless of whether or not it has a crystalline phase. Using this methodology, we separate the vibrational and configurational entropies of two metallic glasses with different fragilities at zero external pressure, namely, Cu50Zr50 and Cu46Zr46Al8. We find that the results for the former alloy are in quite reasonable agreement with recent experimental work by Smith et al. [Nat. Phys. 13, 900 (2017)]. We also find the configurational entropy of the glass containing Al to be 70% larger than that of the other glass. Our results suggest that although other factors may be at play, the configurational entropy can be used to investigate the effect of the addition of a minor-alloying element on the glass-forming ability of bulk metallic glasses.
Subject: Entropia
Transição de fase
Country: Estados Unidos
Editor: American Physical Society
Rights: aberto
Identifier DOI: 10.1103/PhysRevResearch.2.013202
Date Issue: 2020
Appears in Collections:IFGW - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000602500700004.pdf968.71 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.