Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/356599
Type: Artigo
Title: Actions of Taft's algebras on finite dimensional algebras
Author: Centrone, Lucio
Yasumura, Felipe
Abstract: Let F be a field containing a primitive m-th root of the unit. We characterize the actions of a Taft's algebra of a certain order m on finite dimensional arbitrary algebras. We describe the action in terms of gradings and actions by skew-derivations. Moreover we prove the associative algebra of upper triangular matrices with entries from F does not generate a variety of -module algebras of almost polynomial growth
Subject: Álgebra
Country: Estados Unidos
Editor: Elsevier
Rights: Fechado
Identifier DOI: 10.1016/j.jalgebra.2020.06.007
Address: https://www.sciencedirect.com/science/article/abs/pii/S0021869320303045
Date Issue: 2020
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000557787200030.pdf491.73 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.