Please use this identifier to cite or link to this item:
Type: Artigo
Title: A time series mining approach for agricultural area detection
Author: Silva, João Paulo Da
Zullo, Jurandir
Romani, Luciana Alvim Santos
Abstract: Acquiring meaningful data to be employed in building training sets for classification models is a costly task, both in terms of difficult to find suitable samples as well as their quantity. In this sense, Active Learning (AL) improves the training set building by providing an efficient way to select only essential data to be attached to the training set, consequently reducing its size and even enhancing model's accuracy, when compared to random sample selection. In this paper, we proposed a framework for time series classification in order to monitor sugarcane area in São Paulo, Brazil. The AL approach consisted of selecting seasonal time series information from less than 1 percent of each class' pixels to build the training set and evaluate this selection by an expert user supported by distance measurements, repeating this process until both distance measurement thresholds were satisfied. In most years, the classification results presented about 90 percent of correlation with official estimates based on both traditional and satellite image analysis methods. This framework can then help Land Use Change (LUC) monitoring as it produced similar results compared to other methods that demands more human and financial resources to be adopted
Subject: Classificação
Country: Estados Unidos
Editor: Institute of Electrical and Electronics Engineers
Rights: Fechado
Identifier DOI: 10.1109/TBDATA.2019.2913402
Date Issue: 2020
Appears in Collections:FEAGRI - Artigos e Outros Documentos
Cepagri- Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.