Please use this identifier to cite or link to this item:
Type: Artigo
Title: Automatic stopping rule for iterative methods in discrete Ill-posed problems
Author: Borges, Leonardo S.
Borges, Leonardo S.
Cunha, Maria C. C.
Abstract: The numerical treatment of large-scale discrete ill-posed problems is often accomplished iteratively by projecting the original problem onto a -dimensional subspace with acting as regularization parameter. Hence, to filter out the contribution of noise in the computed solution, the iterative process must be stopped early. In this paper, we analyze in detail a stopping rule for LSQR proposed recently by the authors, and show how to extend it to Krylov subspace methods such as GMRES, MINRES, etc. Like the original rule, the extended version works well without requiring a priori knowledge about the error norm and stops automatically (k) over bar + 1 after steps where (k) over bar is the computed regularization parameter. The performance of the stopping rule on several test problems is illustrated numerically
Subject: Algoritmos
Country: Alemanha
Editor: Springer
Rights: Fechado
Identifier DOI: 10.1007/s40314-014-0174-3
Date Issue: 2015
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000361552800021.pdf1.22 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.