Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/353443
Type: Artigo
Title: A machine learning application based in random forest for integrating mass spectrometry-based metabolomic data: a simple screening method for patients with Zika Virus
Author: Melo, Carlos Fernando Odir Rodrigues
Navarro, Luiz Claudio
Oliveira, Diogo Noin de
Guerreiro, Tatiane Melina
Lima, Estela de Oliveira
Delafiori, Jeany
Dabaja, Mohamed Ziad
Menezes, Maico de
Rodrigues, Rafael gustavo Martins
Morishita, Ka
Abstract: Recent Zika outbreaks in South America, accompanied by unexpectedly severe clinical complications have brought much interest in fast and reliable screening methods for ZIKV (Zika virus) identification. Reverse-transcriptase polymerase chain reaction (RT-P
Subject: Zika virus
Diagnóstico auxiliado por computador
Espectrometria de massas de alta resolução
Aprendizado de máquina
Country: Suíça
Editor: Frontiers Media
Rights: Aberto
Identifier DOI: 10.3389/fbioe.2018.00031
Address: https://www.frontiersin.org/articles/10.3389/fbioe.2018.00031/
Date Issue: 2018
Appears in Collections:IB - Artigos e Outros Documentos
FCM - Artigos e Outros Documentos
IC - Artigos e Outros Documentos
FCF - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000440267300001.pdf3.3 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.