Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/353266
Type: TESE DIGITAL
Degree Level: Doutorado
Title: Fog computing-based traffic management support for intelligent transportation systems : Suporte a gerenciamento do trânsito baseado em computação na névoa para os sistemas de transporte inteligentes
Title Alternative: Suporte a gerenciamento do trânsito baseado em computação na névoa para os sistemas de transporte inteligentes
Author: Brennand, Celso Augusto Raposo Lisboa, 1980-
Advisor: Villas, Leandro Aparecido, 1983-
Abstract: Resumo: O trânsito nos grandes centros urbanos contribui com problemas que vão desde diminuição da qualidade de vida e segurança da população até o aumento de custos financeiros às pessoas, cidades e empresas. Um dos motivos para um maior tráfego de veículos é o vertiginoso crescimento populacional dos centros urbanos. Além disso, o fluxo de veículos é prejudicado por situações adversas recorrentes nas vias, como o aumento súbito do tráfego durante os horários de pico, gargalos nas infraestruturas de transporte, e acidentes de trânsito. Com o avanço das tecnologias de comunicação, processamento e sensoriamento, os Sistemas de Transporte Inteligentes (ITS) surgem como uma alternativa para mitigar esses problemas. A interoperabilidade dos ITS com novas tecnologias tais como as redes veiculares (VANETs) e computação em névoa, os tornam mais promissores e eficazes. As VANETs preveem que veículos possuam poder computacional e capacidade de comunicação sem fio com outros veículos e com as infraestruturas fixa de comunicação, assim, uma nova gama de serviços de segurança e entretenimento aos motoristas e passageiros podem ser desenvolvidas. Entretanto, estes tipos de serviços, em especial o de gerenciamento de trânsito, demandam uma análise contínua das condições de fluxo de veículos nas vias e um vasto recurso de rede e processamento, tornando o desenvolvimento de soluções para ITS mais complexo e de difícil escalabilidade. A computação em névoa é uma infraestrutura de computação descentralizada na qual dados, processamento, armazenamento e aplicações são distribuídos na borda da rede, assim, aumentando a escalabilidade do sistema. Na literatura, os sistemas de gerenciamento de tráfego não tratam de maneira adequada o problema de escalabilidade, implicando em problemas relacionados ao balanceamento de carga e tempo de resposta. Esta tese de doutorado propõe um sistema de gerenciamento de tráfego baseado no paradigma de computação em névoa, para detectar, classificar e controlar o congestionamento de tráfego. O sistema proposto apresenta um framework distribuído e escalável que reduz os problemas supracitados em relação ao estado da arte. Para tanto, utilizando da natureza distribuída da computação em névoa, a solução implementa um algoritmo de roteamento probabilístico que faz o balanceamento do tráfego e evita o problema de deslocamento de congestionamentos para outras regiões. Utilizando às características da computação em névoa, foi desenvolvida uma metodologia distribuída baseada em regiões que faz a coleta de dados e classificação das vias em relação às condições do trânsito compartilhadas pelos veículos. Finalmente, foi desenvolvido um conjunto de algoritmos/protocolos de comunicação que comparado com outras soluções da literatura, reduz a perda de pacotes e o número de mensagens transmitidas. O serviço proposto foi comparado extensivamente com outras soluções da literatura em relação às métricas de trânsito, onde o sistema proposto foi capaz de reduzir em até 70% o tempo parado e em até 49% o planning time index. Considerando as métricas de comunicação, o serviço proposto é capaz de reduzir em até 12% a colisão de pacotes alcançando uma cobertura de 98% do cenário. Os resultados mostram que o framework baseado em computação em névoa desenvolvido, melhora o fluxo de veículos de forma eficiente e escalável

Abstract: Traffic in large urban centers contributes to problems that range from decreasing the population¿s quality of life and security to increasing financial costs for people, cities, and companies. One of the reasons for increased vehicle traffic is the population growth in urban centers. Moreover, vehicle flow is hampered by recurring adverse situations on roads, such as the sudden increase in vehicle traffic during peak hours, bottlenecks in transportation infrastructure, and traffic accidents. Considering the advance of communication, processing, and sensing technologies, Intelligent Transport Systems (ITS) have emerged as an alternative to mitigate these problems. The interoperability of ITS with new technologies, such as vehicular networks (VANETs) and Fog computing, make them more promising and effective. VANETs ensure that vehicles have the computing power and wireless communication capabilities with other vehicles and with fixed communication infrastructures; therefore, a new range of security and entertainment services for drivers and passengers can be developed. However, these types of services, especially traffic management, demand a continuous analysis of vehicle flow conditions on roads and a huge network and processing resource, making the development of ITS solutions more complex and difficult to scale. Fog computing is a decentralized computing infrastructure in which data, processing, storage, and applications are distributed at the network edge, thereby increasing the system¿s scalability. In the literature, traffic management systems do not adequately address the scalability problem, resulting in load balancing and response time problems. This doctoral thesis proposes a traffic management system based on the Fog computing paradigm to detect, classify, and control traffic congestion. The proposed system presents a distributed and scalable framework that reduces the aforementioned problems in relation to state of the art. Therefore, using Fog computing¿s distributed nature, the solution implements a probabilistic routing algorithm that balances traffic and avoids the problem of congestion displacement to other regions. Using the characteristics of Fog computing, a distributed methodology was developed based on regions that collect data and classify the roads concerning the traffic conditions shared by the vehicles. Finally, a set of communication algorithms/protocols was developed which, compared with other literature solutions, reduces packet loss and the number of messages transmitted. The proposed service was compared extensively with other solutions in the literature regarding traffic metrics, where the proposed system was able to reduce downtime by up to 70% and up to 49% of the planning time index. Considering communication metrics, the proposed service can reduce packet collision by up to 12% reaching 98% coverage of the scenario. The results show that the framework based on Fog computing developed improves the vehicles¿ flow efficiently and in a scalable way
Subject: Sistemas inteligentes de veículos rodoviários
Sistemas inteligentes de controle
Sistemas de comunicação móvel
Trânsito - Congestionamento
Redes ad hoc veiculares (Redes de computadores)
Language: Inglês
Editor: [s.n.]
Citation: BRENNAND, Celso Augusto Raposo Lisboa. Fog computing-based traffic management support for intelligent transportation systems: Suporte a gerenciamento do trânsito baseado em computação na névoa para os sistemas de transporte inteligentes. 2020. 1 recurso online (130 p.) Tese (doutorado) ¿ Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP.
Date Issue: 2020
Appears in Collections:IC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Brennand_CelsoAugustoRaposoLisboa_D.pdf13.9 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.