Please use this identifier to cite or link to this item:
Type: Artigo
Title: Mass spectrometry imaging: an expeditious and powerful technique for fast in situ lignin assessment in eucalyptus
Author: Catharino, R. R.
Araujo, P.
Sawaya, A. C. H. F. L.
Ferreira, M. S.
Pereira, L.
Mazzafera, P.
de Oliyeira, D. N.
Abstract: Plant biomass has been suggested as an alternative to produce bioethanol. The recalcitrance of plant biomass to convert cellulose into simpler carbohydrates used in the fermentation process is partially due to lignin, but the standard methods used to analyze lignin composition frequently use toxic solvents and are laborious and time-consuming. MS imaging was used to study lignin in Eucalyptus, since this genus is the main source of cellulose in the world. Hand-cut sections of stems of two Eucalyptus species were covered with silica and directly analyzed by matrix-assisted laser sesorption ionization (MALDI)-imaging mass spectrometry (MS). Information available in the literature about soluble lignin subunits and structures were used to trace their distribution in the sections and using a software image a relative quantification could be made. Matrixes routinely used in MALDI-imaging analysis are not satisfactory to analyze plant material and were efficiently substituted by thin layer chromatography (TLC) grade silica. A total of 22 compounds were detected and relatively quantified. It was also possible to establish a proportion between syringyl and guaiacyl monolignols, characteristic for each species. Because of the simple way that samples are prepared, the MALDI-imaging approach presented here can replace, in routine analysis, complex and laborious MS methods in the study of lignin composition
Subject: Cana-de-açúcar
Country: Estados Unidos
Editor: American Chemical Society
Rights: Fechado
Identifier DOI: 10.1021/ac500220r
Date Issue: 2014
Appears in Collections:IB - Artigos e Outros Documentos
FCM - Artigos e Outros Documentos
FCF - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000333776600024.pdf1.13 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.