Please use this identifier to cite or link to this item:
Type: Artigo
Title: Analysis of a novel density matching criterion within the ITL framework for blind channel equalization
Author: Fantinato, Denis G.
Neves, Aline
Attux, Romis
Abstract: In blind channel equalization, the use of criteria from the field of information theoretic learning (ITL) has already proved to be a promising alternative, since the use of the high-order statistics is mandatory in this task. In view of the several existent ITL propositions, we present in this work a detailed comparison of the main ITL criteria employed for blind channel equalization and also introduce a new ITL criterion based on the notion of distribution matching. The analyses of the ITL framework are held by means of comparison with elements of the classical filtering theory and among the studied ITL criteria themselves, allowing a new understanding of the existing ITL framework. The verified connections provide the basis for a comparative performance analysis in four practical scenarios, which encompasses discrete/continuous sources with statistical independence/dependence, and real/complex-valued modulations, including the presence of Gaussian and non-Gaussian noise. The results indicate the most suitable ITL criteria for a number of scenarios, some of which are favorable to our proposition
Subject: Entropia
Country: Suiça
Editor: Springer
Rights: Fechado
Identifier DOI: 10.1007/s00034-017-0543-4
Date Issue: 2018
Appears in Collections:FEEC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000419472400010.pdf2.51 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.