Please use this identifier to cite or link to this item:
Type: Artigo
Title: 3D printed millireactors for process intensification
Author: Santana, Harrson S.
Rodrigues, Alan C.
Lopes, Mariana G. M.
Russo, Felipe N.
Silva, Joao L., Jr.
Taranto, Osvaldir P.
Abstract: The scope of the present research aims at demonstrating the 3D printing use in the manufacturing of microchannels for chemical process applications. A comparison among digital model processing applications for 3D print (slicers) and a print layer thickness analysis were performed. The 3D print fidelity was verified in several devices, including the microchannels' printing with and without micromixer zones. In order to highlight the 3D print potential in Chemical Engineering, the biodiesel synthesis was also carried out in a millireactor manufactured by 3D printing. The millireactor operated under laminar flow regime with a total flow rate of 75.25 ml. min(-1) (increment of about 130 times over traditional microdevices used for biodiesel production). The printed millireactor provided a maximum yield of Ethyl Esters of 73.51% at 40 degrees C, ethanol:oil molar ratio of 7 and catalyst concentration of 125 wt% and residence time about 10 s. As a result of flow rate increment attained in the millireactor, the number of required units for scaling-up the chemical processes is reduced. Using the approach described in the present research, anyone could produce their own millireactor for chemical process in a simple way with the aid of a 3D printer
Subject: Biodiesel
Country: Países Baixos
Editor: Elsevier
Rights: Fechado
Identifier DOI: 10.1016/j.cjche.2018.12.013
Date Issue: 2020
Appears in Collections:FEQ - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000519533600020.pdf12.62 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.