Please use this identifier to cite or link to this item:
Type: Artigo
Title: Construction of minimum energy high-order helmholtz bases for structured elements
Author: Rodrigues, Caio F.
Suzuki, Jorge L.
Bittencourt, Marco L.
Abstract: We present a construction procedure for high-order expansion bases for structured finite elements specific for the operator under consideration. The procedure aims to obtain bases in such way that the condition numbers for the element matrices are almost constant or have a moderate increase in terms of the polynomial order. The internal modes of the mass and stiffness matrices are made simultaneously diagonal and the minimum energy concept is used to make the boundary modes orthogonal to the internal modes. The performance of the proposed bases is compared to the standard basis using Jacobi polynomials. This is performed through numerical examples for Helmholtz problem and transient linear elasticity employing explicit and implicit time integration algorithms and the conjugate gradient method with diagonal, SSOR and Gauss–Seidel pre-conditioners. The sparsity patterns, conditioning and solution costs are investigated. A significant speedup and reduction in the number of iterations are obtained when compared to the standard basis
Subject: Método dos elementos finitos
Country: Estados Unidos
Editor: Elsevier
Rights: Fechado
Identifier DOI: 10.1016/
Date Issue: 2016
Appears in Collections:FEM - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000366157000015.pdf2.27 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.