Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/349173
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampSuzuki, Jorge Luis-
dc.contributor.authorunicampBittencourt, Marco Lúcio-
dc.typeArtigopt_BR
dc.titleFractional-order uniaxial visco-elasto-plastic models for structural analysispt_BR
dc.contributor.authorSuzuki, J.L.-
dc.contributor.authorZayernouri, M.-
dc.contributor.authorBittencourt, M.L.-
dc.contributor.authorKarniadakis, G.E.-
dc.subjectPlasticidadept_BR
dc.subject.otherlanguagePlasticitypt_BR
dc.description.abstractWe propose two fractional-order models for uniaxial large strains and visco-elasto-plastic behavior of materials in structural analysis. Fractional modeling seamlessly interpolates between the standard elasto-plastic and visco-elasto-plastic models, taking into account the history (memory) effects of the accumulated plastic strain to specify the state of stress. To this end, we develop two models, namely M1 and M2, corresponding to visco-elasto-plasticity considering a rate-dependent yield function and visco-plastic regularization, respectively. Specifically, we employ a fractional-order constitutive law that relates the Kirchhoff stress to the Caputo time-fractional derivative of the strain with order . When the standard rate-independent elasto-plastic model with linear isotropic hardening is recovered by the models for general loading, and when , the corresponding classical visco-plastic model of Duvaut–Lions (Perzyna) type is recovered by the model M2 for monotonic loading. Since the material behavior is path-dependent, the evolution of the plastic strain is achieved by fractional-order time integration of the plastic strain rate with respect to time. The plastic strain rate is then obtained by means of the corresponding plastic slip and proper consistency conditions. Finally, we develop the so called fractional return-mapping algorithm for solving the nonlinear system of the equilibrium equations developed for each model. This algorithm seamlessly generalizes the standard return-mapping algorithm to its fractional counterpart. We test both models for convergence subject to prescribed strain rates, and subsequently we implement the models in a finite element truss code and solve for a two-dimensional snap-through instability problem. The simulation results demonstrate the flexibility of fractional-order modeling using the Caputo derivative to account for rate-dependent hardening and viscous dissipation, and its potential to effectively describe complex constitutive laws of engineering materials and especially biological tissuespt_BR
dc.relation.ispartofComputer methods in applied mechanics and engineeringpt_BR
dc.relation.ispartofabbreviationComput. meth. appl. mech. eng.pt_BR
dc.publisher.cityAmsterdampt_BR
dc.publisher.countryPaíses Baixospt_BR
dc.publisherElsevierpt_BR
dc.date.issued2016-
dc.date.monthofcirculationAug.pt_BR
dc.language.isoengpt_BR
dc.description.volume308pt_BR
dc.description.firstpage443pt_BR
dc.description.lastpage467pt_BR
dc.rightsFechadopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn0045-7825pt_BR
dc.identifier.eissn1879-2138pt_BR
dc.identifier.doi10.1016/j.cma.2016.05.030pt_BR
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0045782516304418pt_BR
dc.description.sponsorshipCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESpt_BR
dc.description.sponsordocumentnumber99999.010717/2014-05pt_BR
dc.date.available2020-09-14T13:56:46Z-
dc.date.accessioned2020-09-14T13:56:46Z-
dc.description.provenanceSubmitted by Susilene Barbosa da Silva (susilene@unicamp.br) on 2020-09-14T13:56:46Z No. of bitstreams: 0. Added 1 bitstream(s) on 2021-01-07T20:39:37Z : No. of bitstreams: 1 000380512800019.pdf: 1815079 bytes, checksum: f2a741ecb54edd28a911741a1537c145 (MD5) Bitstreams deleted on 2021-01-08T14:10:14Z: 000380512800019.pdf,. Added 1 bitstream(s) on 2021-01-08T14:13:19Z : No. of bitstreams: 1 000380512800019.pdf: 1815079 bytes, checksum: f2a741ecb54edd28a911741a1537c145 (MD5) Bitstreams deleted on 2021-01-13T13:27:10Z: 000380512800019.pdf,. Added 1 bitstream(s) on 2021-01-13T13:29:04Z : No. of bitstreams: 1 000380512800019.pdf: 1815084 bytes, checksum: 935d44a471f7ad433b3eac9425b960b1 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-09-14T13:56:46Z (GMT). No. of bitstreams: 0 Previous issue date: 2016en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/349173-
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.departmentDepartamento de Projeto Mecânicopt_BR
dc.contributor.unidadeFaculdade de Engenharia Mecânicapt_BR
dc.contributor.unidadeFaculdade de Engenharia Mecânicapt_BR
dc.subject.keywordFractional-order constitutive lawspt_BR
dc.subject.keywordLarge strainspt_BR
dc.subject.keywordTime-fractional integrationpt_BR
dc.identifier.source000380512800019pt_BR
dc.creator.orcidSem informaçãopt_BR
dc.creator.orcid0000-0002-5490-297Xpt_BR
dc.type.formArtigopt_BR
Appears in Collections:FEM - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000380512800019.pdf1.77 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.