Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/349135
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.CRUESP | UNIVERSIDADE ESTADUAL DE CAMPINAS | pt_BR |
dc.contributor.authorunicamp | Cardieri, Paulo | - |
dc.type | Artigo | pt_BR |
dc.title | Throughput analysis of cognitive wireless networks with Poisson distributed nodes based on location information | pt_BR |
dc.contributor.author | Nardelli, Pedro H.J. | - |
dc.contributor.author | Lima, Carlos H.M. de | - |
dc.contributor.author | Alves, Hirley | - |
dc.contributor.author | Cardieri, Paulo | - |
dc.contributor.author | Latva-aho, Matti | - |
dc.subject | Geometria estocástica | pt_BR |
dc.subject.otherlanguage | Stochastic geometry | pt_BR |
dc.description.abstract | This paper provides a statistical characterization of the individual achievable rates in bits/s/Hz and the spatial throughput of bipolar Poisson wireless networks in bits/s/Hz/m2. We assume that all cognitive transmitters know the distance to their receiver’s closest interferers and use this side-information to autonomously tune their coding rates to avoid outage events for each spatial realization. Considering that the closest interferer approximates the aggregate interference of all transmitters treated as noise, we derive closed-form expressions for the probability density function of the achievable rates under two decoding rules: treating interference as noise, and jointly detecting the strongest interfering signals treating the others as noise. Based on these rules and the bipolar model, we approximate the expected maximum spatial throughput, showing the best performance of the latter decoding rule. These results are also compared to the reference scenario where the transmitters do not have cognitive ability, coding their messages at predetermined rates that are chosen to optimize the expected spatial throughput – regardless of particular realizations – which yields outages. We prove that, when the same decoding rule and network density are considered, the cognitive spatial throughput always outperforms the other option | pt_BR |
dc.relation.ispartof | Ad hoc networks | pt_BR |
dc.publisher.city | Amsterdam | pt_BR |
dc.publisher.country | Países Baixos | pt_BR |
dc.publisher | Elsevier | pt_BR |
dc.date.issued | 2015 | - |
dc.date.monthofcirculation | Oct. | pt_BR |
dc.language.iso | eng | pt_BR |
dc.description.volume | 33 | pt_BR |
dc.description.firstpage | 1 | pt_BR |
dc.description.lastpage | 15 | pt_BR |
dc.rights | Fechado | pt_BR |
dc.source | WOS | pt_BR |
dc.identifier.issn | 1570-8705 | pt_BR |
dc.identifier.eissn | 1570-8713 | pt_BR |
dc.identifier.doi | 10.1016/j.adhoc.2015.04.001 | pt_BR |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S1570870515000748 | pt_BR |
dc.date.available | 2020-09-11T17:35:41Z | - |
dc.date.accessioned | 2020-09-11T17:35:41Z | - |
dc.description.provenance | Submitted by Mariana Aparecida Azevedo (mary1@unicamp.br) on 2020-09-11T17:35:41Z No. of bitstreams: 0. Added 1 bitstream(s) on 2021-01-08T19:03:09Z : No. of bitstreams: 1 000362304400001.pdf: 842155 bytes, checksum: c6cc418ce6596dfc95643eb8dc8b631d (MD5) | en |
dc.description.provenance | Made available in DSpace on 2020-09-11T17:35:41Z (GMT). No. of bitstreams: 0 Previous issue date: 2015 | en |
dc.identifier.uri | http://repositorio.unicamp.br/jspui/handle/REPOSIP/349135 | - |
dc.contributor.department | Departamento de Comunicações | pt_BR |
dc.contributor.unidade | Faculdade de Engenharia Elétrica e de Computação | pt_BR |
dc.subject.keyword | Cognitive networks | pt_BR |
dc.subject.keyword | Spatial throughput | pt_BR |
dc.identifier.source | 000362304400001 | pt_BR |
dc.creator.orcid | 0000-0002-7761-0240 | pt_BR |
dc.type.form | Artigo | pt_BR |
Appears in Collections: | FEEC - Artigos e Outros Documentos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
000362304400001.pdf | 822.42 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.