Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/349134
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampHaveroth, Geovane Augusto-
dc.contributor.authorunicampMoraes, Eduardo Augusto Barros de-
dc.contributor.authorunicampBoldrini, José Luiz-
dc.contributor.authorunicampBittencourt, Marco Lúcio-
dc.typeArtigopt_BR
dc.titleComparison of semi and fully-implicit time integration schemes applied to a damage and fatigue phase field modelpt_BR
dc.contributor.authorHaveroth, Geovane A.-
dc.contributor.authorMoraes, Eduardo A. Barros de-
dc.contributor.authorBoldrini, José L.-
dc.contributor.authorBittencourt, Marco L.-
dc.subjectFadigapt_BR
dc.subject.otherlanguageFatiguept_BR
dc.description.abstractIn this work, we apply semi and fully-implicit time integration schemes to the damage and fatigue phase field presented in Boldrini et al. (2016). The damage phase field is considered a continuous dynamic variable whose evolution equation is obtained by the principle of virtual power. The fatigue phase field is a continuous internal variable whose evolution equation is considered as a constitutive relation to be determined in a thermodynamically consistent way. In the semi-implicit scheme, each equation is solved separately by suited implicit method. The Newton’s method is used to linearize the equations in the fully-implicit scheme. The time integration methods are compared and the results of damage and fracture evolution under the influence of fatigue effects are presented. The computational cost associated to the semi-implicit scheme showed be lower than the fully counterpartpt_BR
dc.relation.ispartofLatin american journal of solids and structurespt_BR
dc.publisher.cityRecife, PEpt_BR
dc.publisher.countryBrasilpt_BR
dc.publisherAssociação Brasileira de Métodos Computacionais em Engenhariapt_BR
dc.date.issued2018-
dc.date.monthofcirculationJunept_BR
dc.language.isoengpt_BR
dc.description.volume15pt_BR
dc.description.issuenumber5pt_BR
dc.description.firstpage1pt_BR
dc.description.lastpage16pt_BR
dc.rightsAbertopt_BR
dc.sourceSCIELOpt_BR
dc.identifier.issn1679-7817pt_BR
dc.identifier.eissn1679-7825pt_BR
dc.identifier.doi10.1590/1679-78254383pt_BR
dc.identifier.urlhttps://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018000500503pt_BR
dc.description.sponsorshipCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQpt_BR
dc.description.sponsorshipCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESpt_BR
dc.description.sponsorshipFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPpt_BR
dc.description.sponsordocumentnumber306182/2014-9pt_BR
dc.description.sponsordocumentnumber33003017pt_BR
dc.description.sponsordocumentnumber2013/50238-3; 2015/10310-2; 2015/20188-0pt_BR
dc.date.available2020-09-11T17:33:56Z-
dc.date.accessioned2020-09-11T17:33:56Z-
dc.description.provenanceSubmitted by Susilene Barbosa da Silva (susilene@unicamp.br) on 2020-09-11T17:33:56Z No. of bitstreams: 0. Added 1 bitstream(s) on 2021-01-07T20:39:36Z : No. of bitstreams: 1 S1679-78252018000500503.pdf: 1245922 bytes, checksum: 4e23e466b26b8575e55a9b00eddd6498 (MD5) Bitstreams deleted on 2021-01-08T14:10:13Z: S1679-78252018000500503.pdf,. Added 1 bitstream(s) on 2021-01-08T14:13:18Z : No. of bitstreams: 1 S1679-78252018000500503.pdf: 1245922 bytes, checksum: 4e23e466b26b8575e55a9b00eddd6498 (MD5) Bitstreams deleted on 2021-01-13T13:27:09Z: S1679-78252018000500503.pdf,. Added 1 bitstream(s) on 2021-01-13T13:29:01Z : No. of bitstreams: 1 S1679-78252018000500503.pdf: 1245922 bytes, checksum: 4e23e466b26b8575e55a9b00eddd6498 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-09-11T17:33:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2018en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/349134-
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.departmentDepartamento de Matemáticapt_BR
dc.contributor.departmentDepartamento de Projeto Mecânicopt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.contributor.unidadeFaculdade de Engenharia Mecânicapt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.contributor.unidadeFaculdade de Engenharia Mecânicapt_BR
dc.subject.keywordDamagept_BR
dc.subject.keywordPhase fieldpt_BR
dc.subject.keywordFinite element methodpt_BR
dc.identifier.sourceS1679-78252018000500503pt_BR
dc.creator.orcid0000-0001-6537-3930pt_BR
dc.creator.orcidSem informaçãopt_BR
dc.creator.orcid0000-0003-4293-7611pt_BR
dc.creator.orcid0000-0002-5490-297Xpt_BR
dc.type.formArtigo originalpt_BR
Appears in Collections:IMECC - Artigos e Outros Documentos
FEM - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
S1679-78252018000500503.pdf1.22 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.