Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/348496
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampPrates, Erica Teixeira-
dc.contributor.authorunicampGomes, Thiago Costa Ferreira-
dc.contributor.authorunicampSilveira, Rodrigo Leandro-
dc.contributor.authorunicampSkaf, Munir Salomão-
dc.typeArtigopt_BR
dc.titleMolecular basis of the thermostability and thermophilicity of laminarinases: x-ray structure of the hyperthermostable laminarinase from rhodothermus marinus and molecular dynamics simulationspt_BR
dc.contributor.authorBleicher, Lucas-
dc.contributor.authorPrates, Erica T.-
dc.contributor.authorGomes, Thiago C. F.-
dc.contributor.authorSilveira, Rodrigo L.-
dc.contributor.authorNascimento, Alessandro S.-
dc.contributor.authorRojas, Adriana L.-
dc.contributor.authorGolubev, Alexander-
dc.contributor.authorMartínez, Leandro-
dc.contributor.authorSkaf, Munir S.-
dc.contributor.authorPolikarpov, Igor-
dc.subjectDinâmica molecularpt_BR
dc.subject.otherlanguageMolecular dynamicspt_BR
dc.description.abstractGlycosyl hydrolases are enzymes capable of breaking the glycosidic linkage of polysaccharides and have considerable industrial and biotechnological applications. Driven by the later applications, it is frequently desirable that glycosyl hydrolases display stability and activity under extreme environment conditions, such as high temperatures and extreme pHs. Here, we present X-ray structure of the hyperthermophilic laminarinase from Rhodothermus marinus (RmLamR) determined at 1.95 Å resolution and molecular dynamics simulation studies aimed to comprehend the molecular basis for the thermal stability of this class of enzymes. As most thermostable proteins, RmLamR contains a relatively large number of salt bridges, which are not randomly distributed on the structure. On the contrary, they form clusters interconnecting β-sheets of the catalytic domain. Not all salt bridges, however, are beneficial for the protein thermostability: the existence of charge–charge interactions permeating the hydrophobic core of the enzymes actually contributes to destabilize the structure by facilitating water penetration into hydrophobic cavities, as can be seen in the case of mesophilic enzymes. Furthermore, we demonstrate that the mobility of the side-chains is perturbed differently in each class of enzymes. The side-chains of loop residues surrounding the catalytic cleft in the mesophilic laminarinase gain mobility and obstruct the active site at high temperature. By contrast, thermophilic laminarinases preserve their active site flexibility, and the active-site cleft remains accessible for recognition of polysaccharide substrates even at high temperatures. The present results provide structural insights into the role played by salt-bridges and active site flexibility on protein thermal stability and may be relevant for other classes of proteins, particularly glycosyl hydrolasespt_BR
dc.relation.ispartofThe journal of physical chemistry part Bpt_BR
dc.relation.ispartofabbreviationJ phys chem Bpt_BR
dc.publisher.cityWashington, DCpt_BR
dc.publisher.countryEstados Unidospt_BR
dc.publisherAmerican Chemical Societypt_BR
dc.date.issued2011-
dc.date.monthofcirculationMaypt_BR
dc.language.isoengpt_BR
dc.description.volume115pt_BR
dc.description.issuenumber24pt_BR
dc.description.firstpage7940pt_BR
dc.description.lastpage7949pt_BR
dc.rightsFechadopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn1520-6106pt_BR
dc.identifier.eissn1520-5207pt_BR
dc.identifier.doi10.1021/jp200330zpt_BR
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/jp200330zpt_BR
dc.description.sponsorshipCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQpt_BR
dc.description.sponsorshipFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPpt_BR
dc.description.sponsordocumentnumber490022/2009-0pt_BR
dc.description.sponsordocumentnumber08/56225-9; 10/16947-9; 10/18849-4; 09/14107-6; 10/08680-2pt_BR
dc.date.available2020-09-01T20:16:18Z-
dc.date.accessioned2020-09-01T20:16:18Z-
dc.description.provenanceSubmitted by Thais de Brito Barroso (tbrito@unicamp.br) on 2020-09-01T20:16:18Z No. of bitstreams: 0. Added 1 bitstream(s) on 2021-01-04T15:14:54Z : No. of bitstreams: 1 000291709500026.pdf: 4366363 bytes, checksum: f9eb09ac3e1322cd90284303979618a4 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-09-01T20:16:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2011en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/348496-
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.departmentDepartamento de Físico-Químicapt_BR
dc.contributor.unidadeInstituto de Químicapt_BR
dc.contributor.unidadeInstituto de Químicapt_BR
dc.contributor.unidadeInstituto de Químicapt_BR
dc.contributor.unidadeInstituto de Químicapt_BR
dc.identifier.source000291709500026pt_BR
dc.creator.orcidSem informaçãopt_BR
dc.creator.orcid0000-0001-5101-0821pt_BR
dc.creator.orcidSem informaçãopt_BR
dc.creator.orcid0000-0001-7485-1228pt_BR
dc.type.formArtigopt_BR
Appears in Collections:IQ - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000291709500026.pdf4.26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.