Please use this identifier to cite or link to this item:
Type: Artigo
Title: On the variations of the Betti numbers of regular levels of Morse flows
Author: Bertolim, M. A.
Rezende, K. A. de
Manzoli Neto, O.
Vago, G. M.
Abstract: We generalize results in Cruz and de Rezende (1999) [7] by completely describing how the Beth numbers of the boundary of an orientable manifold vary after attaching a handle, when the homology coefficients are in Z, Q, R or Z/pZ with p prime. First we apply this result to the Conley index theory of Lyapunov graphs. Next we consider the Ogasa invariant associated with handle decompositions of manifolds. We make use of the above results in order to obtain upper bounds for the Ogasa invariant of product manifolds
Subject: Números de Betti
Country: Países Baixos
Editor: Elsevier
Rights: Fechado
Identifier DOI: 10.1016/j.topol.2011.01.021
Date Issue: 2011
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000288769000004.pdf296.88 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.