Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/348318
Type: | Artigo |
Title: | On the variations of the Betti numbers of regular levels of Morse flows |
Author: | Bertolim, M. A. Rezende, K. A. de Manzoli Neto, O. Vago, G. M. |
Abstract: | We generalize results in Cruz and de Rezende (1999) [7] by completely describing how the Beth numbers of the boundary of an orientable manifold vary after attaching a handle, when the homology coefficients are in Z, Q, R or Z/pZ with p prime. First we apply this result to the Conley index theory of Lyapunov graphs. Next we consider the Ogasa invariant associated with handle decompositions of manifolds. We make use of the above results in order to obtain upper bounds for the Ogasa invariant of product manifolds |
Subject: | Números de Betti |
Country: | Países Baixos |
Editor: | Elsevier |
Rights: | Fechado |
Identifier DOI: | 10.1016/j.topol.2011.01.021 |
Address: | https://www.sciencedirect.com/science/article/pii/S0166864111000356 |
Date Issue: | 2011 |
Appears in Collections: | IMECC - Artigos e Outros Documentos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
000288769000004.pdf | 296.88 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.