Please use this identifier to cite or link to this item:
Type: Artigo
Title: Two new weak constraint qualifications and applications
Author: Andreani, Roberto
Haeser, Gabriel
Schuverdt, María Laura
Silva, Paulo J. S.
Abstract: We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration
Subject: Condições de qualificação
Country: Estados Unidos
Editor: Society for Industrial and Applied Mathematics
Rights: Fechado
Identifier DOI: 10.1137/110843939
Date Issue: 2012
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000310214800019.pdf452.43 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.