Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/348190
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.CRUESP | UNIVERSIDADE ESTADUAL DE CAMPINAS | pt_BR |
dc.contributor.authorunicamp | Andreani, Roberto | - |
dc.type | Artigo | pt_BR |
dc.title | A relaxed constant positive linear dependence constraint qualification and applications | pt_BR |
dc.contributor.author | Andreani, Roberto | - |
dc.contributor.author | Haeser, Gabriel | - |
dc.contributor.author | Schuverdt, María Laura | - |
dc.contributor.author | Silva, Paulo J. S. | - |
dc.subject | Programação não-linear | pt_BR |
dc.subject.otherlanguage | Nonlinear programming | pt_BR |
dc.description.abstract | In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification by Minchenko and Stakhovski that was called RCRCQ. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and that it asserts the validity of an error bound. We also provide proofs and counter-examples that show the relations of RCRCQ and RCPLD with other known constraint qualifications. In particular, RCPLD is strictly weaker than CPLD and RCRCQ, while still stronger than Abadie’s constraint qualification. We also verify that the second order necessary optimality condition holds under RCRCQ | pt_BR |
dc.relation.ispartof | Mathematical programming | pt_BR |
dc.relation.ispartofabbreviation | Math. program. | pt_BR |
dc.publisher.city | Heidelberg | pt_BR |
dc.publisher.country | Alemanha | pt_BR |
dc.publisher | Springer | pt_BR |
dc.date.issued | 2012 | - |
dc.date.monthofcirculation | Oct. | pt_BR |
dc.language.iso | eng | pt_BR |
dc.description.volume | 135 | pt_BR |
dc.description.firstpage | 255 | pt_BR |
dc.description.lastpage | 273 | pt_BR |
dc.rights | Fechado | pt_BR |
dc.source | WOS | pt_BR |
dc.identifier.issn | 0025-5610 | pt_BR |
dc.identifier.eissn | 1436-4646 | pt_BR |
dc.identifier.doi | 10.1007/s10107-011-0456-0 | pt_BR |
dc.identifier.url | https://link.springer.com/article/10.1007%2Fs10107-011-0456-0 | pt_BR |
dc.description.sponsorship | CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ | pt_BR |
dc.description.sponsorship | FUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIRO - FAPERJ | pt_BR |
dc.description.sponsorship | FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP | pt_BR |
dc.description.sponsordocumentnumber | E-26/171.510/2006-APQ1; 00900/2009-0; 303030/2007-0; 474138/2008-9 | pt_BR |
dc.description.sponsordocumentnumber | E-26/171.510/2006-APQ1 | pt_BR |
dc.description.sponsordocumentnumber | 2006/53768-0; 2009/09414-7 | pt_BR |
dc.date.available | 2020-08-27T23:46:02Z | - |
dc.date.accessioned | 2020-08-27T23:46:02Z | - |
dc.description.provenance | Submitted by Thais de Brito Barroso (tbrito@unicamp.br) on 2020-08-27T23:46:02Z No. of bitstreams: 0. Added 1 bitstream(s) on 2021-01-04T15:14:28Z : No. of bitstreams: 1 000308647100009.pdf: 362424 bytes, checksum: 396116bc66d00841334bf3b7fdcb0f21 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2020-08-27T23:46:02Z (GMT). No. of bitstreams: 0 Previous issue date: 2012 | en |
dc.identifier.uri | http://repositorio.unicamp.br/jspui/handle/REPOSIP/348190 | - |
dc.contributor.department | Departamento de Matemática Aplicada | pt_BR |
dc.contributor.unidade | Instituto de Matemática, Estatística e Computação Científica | pt_BR |
dc.subject.keyword | Constraint qualifications | pt_BR |
dc.subject.keyword | Augmented Lagrangian | pt_BR |
dc.subject.keyword | Error bound property | pt_BR |
dc.identifier.source | 000308647100009 | pt_BR |
dc.creator.orcid | 0000-0003-2031-4325 | pt_BR |
dc.type.form | Artigo | pt_BR |
Appears in Collections: | IMECC - Artigos e Outros Documentos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
000308647100009.pdf | 353.93 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.