Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/348029
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampAndreani, Roberto-
dc.contributor.authorunicampMartínez Pérez, José Mario-
dc.contributor.authorunicampSchuverdt, Maria Laura-
dc.typeArtigopt_BR
dc.titleSecond-order negative-curvature methods for box-constrained and general constrained optimizationpt_BR
dc.contributor.authorAndreani, R.-
dc.contributor.authorBirgin, E.G.-
dc.contributor.authorMartínez, J. M.-
dc.contributor.authorSchuverdt, M. L.-
dc.subjectProgramação não-linearpt_BR
dc.subject.otherlanguageNonlinear programmingpt_BR
dc.description.abstractA Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Convergence proofs under weak constraint qualifications are given. Numerical examples showing that the new method converges to second-order stationary points in situations in which first-order methods fail are exhibitedpt_BR
dc.relation.ispartofComputational optimization and applicationspt_BR
dc.relation.ispartofabbreviationComput. optim. appl.pt_BR
dc.publisher.cityNew York, NYpt_BR
dc.publisher.countryEstados Unidospt_BR
dc.publisherSpringerpt_BR
dc.date.issued2010-
dc.date.monthofcirculationMar.pt_BR
dc.language.isoengpt_BR
dc.description.volume45pt_BR
dc.description.firstpage209pt_BR
dc.description.lastpage236pt_BR
dc.rightsFechadopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn0926-6003pt_BR
dc.identifier.eissn1573-2894pt_BR
dc.identifier.doi10.1007/s10589-009-9240-ypt_BR
dc.identifier.urlhttps://link.springer.com/article/10.1007%2Fs10589-009-9240-ypt_BR
dc.description.sponsorshipCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQpt_BR
dc.description.sponsorshipFUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIRO - FAPERJpt_BR
dc.description.sponsorshipFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPpt_BR
dc.description.sponsordocumentnumberE-26/171.510/2006—APQ1pt_BR
dc.description.sponsordocumentnumberE-26/171.510/2006—APQ1pt_BR
dc.description.sponsordocumentnumber2006/53768-0; 2005/57684-2pt_BR
dc.date.available2020-08-26T15:33:04Z-
dc.date.accessioned2020-08-26T15:33:04Z-
dc.description.provenanceSubmitted by Thais de Brito Barroso (tbrito@unicamp.br) on 2020-08-26T15:33:04Z No. of bitstreams: 0. Added 1 bitstream(s) on 2021-01-04T15:14:13Z : No. of bitstreams: 1 000274903400002.pdf: 778433 bytes, checksum: 62cee6a09b1026f3772b78fd3a22dcf2 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-08-26T15:33:04Z (GMT). No. of bitstreams: 0 Previous issue date: 2010en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/348029-
dc.contributor.departmentDepartamento de Matemática Aplicadapt_BR
dc.contributor.departmentDepartamento de Matemática Aplicadapt_BR
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.subject.keywordAugmented lagrangianspt_BR
dc.subject.keywordGlobal convergencept_BR
dc.subject.keywordOptimality conditionspt_BR
dc.subject.keywordSecond-order conditionspt_BR
dc.subject.keywordConstraint qualificationspt_BR
dc.identifier.source000274903400002pt_BR
dc.creator.orcid0000-0003-2031-4325pt_BR
dc.creator.orcid0000-0003-3331-368Xpt_BR
dc.creator.orcidSem informaçãopt_BR
dc.type.formArtigopt_BR
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000274903400002.pdf760.19 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.