Please use this identifier to cite or link to this item:
Type: Artigo
Title: Ratio of products of α-μ variates
Author: Leonardo, Elvio J.
Yacoub, Michel D.
Souza, Rausley A. A. de
Abstract: Exact, closed-form expressions for the probability density function and the cumulative distribution function for the ratio of the products of an arbitrary number of independent and non-identically distributed alpha-mu variates are derived. The only restriction placed on the participating distributions is that there must be a rational relationship between their a parameters, which, in practical terms, represents no impairment. The expressions are given in terms of the Meijer G-function and, alternatively, in terms of a finite sum of hypergeometric functions. These results can be used to investigate the performance of wireless communication systems in a variety of realistic propagation environments in which the numerator and denominator products might be used to represent the signal and the interference. In addition, the results given comprise those for the ratio of the products of arbitrary combinations of other useful distributions such as onesided Gaussian, negative exponential, Rayleigh, Weibull, Gamma, and Nakagami-m. Simulation is used to confirm the results. An application example is given in order to illustrate the use of the formulations
Subject: Sistemas de comunicação sem fio
Country: Estados Unidos
Editor: Institute of Electrical and Electronics Engineers
Rights: Fechado
Identifier DOI: 10.1109/LCOMM.2016.2540621
Date Issue: 2016
Appears in Collections:FEEC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000376516000047.pdf474.91 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.