Please use this identifier to cite or link to this item:
Type: Artigo
Title: A statistical dynamic model for the turbulent transport of kinetic energy in shear layers
Author: Figueiredo, José Ricardo
Abstract: Dynamic statistical equations for the turbulent fluxes of scalars and momentum in incompressible flows are derived after time wise integration of the equation for the oscillating transported property, decomposing the turbulent fluxes in terms representing distinct features of the main and fluctuating flow that influence the respective turbulent transport. These expressions provide a means for discussing the gradient diffusion hypothesis for the turbulent transport, for reconsidering the mixed length model in entirely continuous terms, and for seeking possible alternatives or corrections. Applying this methodology to the turbulent transport flux of kinetic energy, two dominating terms are found: one identified with a kinetic energy gradient model for shear layers; the other related to the main velocity gradient. Accordingly, a composed, Statistical Dynamic model is proposed for the turbulent transport of kinetic energy in shear layers, adding a velocity derivative term to Daly and Harlow's generalized gradient model. This velocity derivative term is calibrated in a nearly homogeneous turbulent shear flow, and the resulting Statistical Dynamic model is proved superior to Daly and Harlow's and other gradient models in channel and boundary layer flows
Subject: Cisalhamento
Country: Brasil
Editor: Instituto de Aeronáutica e Espaço
Rights: Aberto
Identifier DOI: 10.5028/jatm.v10.915
Date Issue: 2018
Appears in Collections:FEM - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
S2175-91462018000100320.pdf2.3 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.